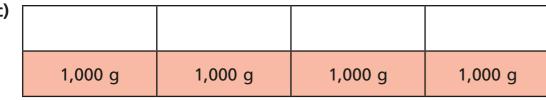
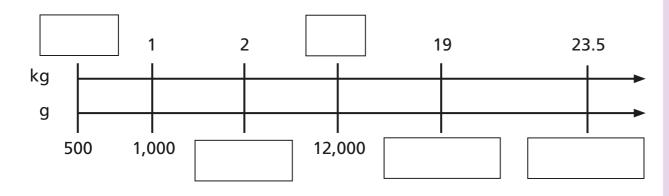


The bar model shows that 1 kg is equal to 1,000 g. Use the bar models to complete the conversions.

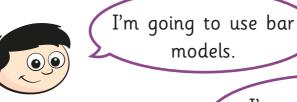
	1 kg	
•	1,000 g	


a)

1 kg	1 kg	1 kg


b)

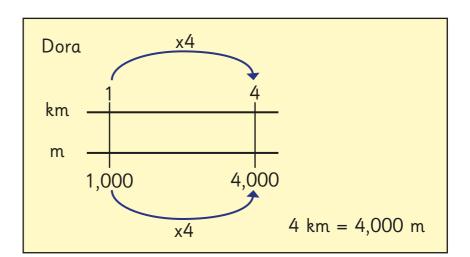
)	1 kg				


c)

Fill in the missing values to convert between kilograms and grams.

Dexter and Whitney are converting 27.5 kg into grams.

I'm going to use a double number line.


= 4,000 m

a) Whose method is more efficient? _____ Explain your answer.

b) Complete the conversion.

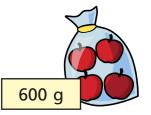
Tommy and Dora are converting 4 km into metres. Here are their workings.

-	Tommy				
	1 km	1 km	1 km	1 km	
	1,000m	1,000m	1,000m	1,000m	4 km

Whose method do you prefer? _____

Explain your answer.

- 5 Complete the conversions.
 - a) 18 kg =
- e) 11.5 km = m
- **b)** 18 km =
- **f)** g = 41.2 kg
- **c)** 21,000 g = kg
- g) g = 0.1 kg
- **d)** 32,500 m = km
- **h)** 100 km = m


6 Complete the conversions.

- c) $\frac{3}{6}$ kg =
- $\frac{1}{4}$ kg =
- $\frac{12}{24}$ kg =
- $\frac{3}{4}$ kg =
- $\frac{99}{198}$ kg = g
- **b)** $\frac{1}{10}$ km =
- **d)** $\frac{20}{20}$ km =
- $\frac{1}{5}$ km = m
- $\frac{1}{20}$ km = m
- $\frac{3}{10}$ km =
- $\frac{19}{20}$ km =
- 7 Write <, > or = to compare the measurements.
 - **a)** 0.5 km () 600 m
 - **b)** 3.7 kg () 3,200 g
 - c) 5,000 g + 2 kg 5.5 kg + 1,500 g
 - d) $\frac{7}{10}$ km + $\frac{3}{10}$ km + 965 m 817 m + 1 km

8 A bag of apples weighs 600 g.

How much do 8 bags of apples weigh? Give your answer in kilograms.

9 Ron buys 3.8 kg of potatoes and 1,250 g of carrots.

He pays with a £20 note.

How much change does he get?

Dora runs 200 m in 32 seconds.

If she runs at the same speed, how long will it take her to run 5 km?

Is Dora likely to be able to keep up this speed?

