Subtracting Fraction Multiples

Aim

- I can subtract fractions with denominators that are multiples of the same number.

Success Criteria

- I can subtract fractions with the same denominator.
- I can convert between improper and mixed number fractions.
- I can use multiplication to change a fraction into an equivalent.
- I can subtract fractions with denominators that are multiples of the same number.

Same Denominators

In this fraction subtraction, both the fractions have the same denominator.

Same Denominators

In this fraction subtraction, both the fractions have the same denominator.

Same Denominators

In this fraction subtraction, both the fractions have the same denominator.

This is a mixed number. Change it to an improper fraction before calculating.

Denominator Multiples

In this fraction subtraction, both the fractions have different denominators which are multiples of the same number.

$$
x 2=10
$$

$x 2=6$

To solve the calculation, we use multiplication to change the fraction with the lowest denominator into an equivalent fraction with the same denominator as the other fraction.

Remember to do the same multiplication to the numerator.

Denominator Multiples

Now we have a calculation where both the denominators are the same number.

$$
x 2=10
$$

Denominator Multiples

Let's try this with another calculation where the fractions have different denominators which are multiples of the same number.

```
x 3 = 9
```


Denominator Multiples

Let's try this with another calculation where the fractions have different denominators which are multiples of the same number.

$$
\times 5=25
$$

Colour by Fraction

Subtracting Fractions

Stained Glass Designs
ubtract fractions with denominators that are multiples of the same number.

nswers to these calculations are:		
$\frac{1}{2}$. between 1 and $1 \frac{1}{2}$		
$\frac{1}{2}$ and $1 \quad \cdot$ greater tha		
tion of the stained-glass design based on your answers.		
Question	Answer	Size
$\frac{7}{8}-\frac{1}{2}=$		
$\frac{13}{8}-\frac{3}{4}=$		
$\frac{10}{6}-\frac{1}{2}=$		
$\frac{13}{4}-\frac{3}{2}=$		
$\frac{7}{10}-\frac{5}{20}=$		
$\frac{4}{3}-\frac{7}{15}=$		
$\frac{31}{20}-\frac{2}{5}=$		
$\frac{19}{9}-\frac{1}{3}=$		

Prove It

Is this calculation correct? Prove it!

$$
2 \frac{6}{10}-\frac{4}{5}=1 \frac{4}{5}
$$

Prove It

Is this calculation correct? Prove it!

$$
2 \frac{5}{6}-\frac{2}{3}=1 \frac{4}{6}
$$

$$
\frac{17}{6}-\frac{4}{6}=\frac{13}{6}=2 \frac{1}{6}
$$

Prove It

Is this calculation correct? Prove it!

Prove It

Is this calculation correct? Prove it!

$$
3 \frac{2}{8}-\frac{3}{4}=2 \frac{1}{2}
$$

Aim

- I can subtract fractions with denominators that are multiples of the same number.

Success Criteria

- I can subtract fractions with the same denominator.
- I can convert between improper and mixed number fractions.
- I can use multiplication to change a fraction into an equivalent.
- I can subtract fractions with denominators that are multiples of the same number.

